题目内容
求f (x)=
+arccos2x的反函数是
| π |
| 2 |
f-1(x)=
sinx,x∈[
,
]
| 1 |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
f-1(x)=
sinx,x∈[
,
]
.| 1 |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
分析:根据函数的解析式,反解出x,确定解析式,再根据原函数中f(x)的范围确定反函数的定义域即可.
解答:解:又f (x)=
+arccos2x,知:
y=
+arccos2x
∴arccos2x=y-
,
x=
cos(y-
)=
siny,y∈[
,
]
故答案为:f-1(x)=
sinx,x∈[
,
]
| π |
| 2 |
y=
| π |
| 2 |
∴arccos2x=y-
| π |
| 2 |
x=
| 1 |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
故答案为:f-1(x)=
| 1 |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
点评:本题考查了函数的反函数的求法,确定反函数的定义域是关键.
练习册系列答案
相关题目