ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µã£¨1£¬-$\frac{\sqrt{2}}{2}$£©ÊÇÍÖÔ²CÉϵĵ㣬ÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µãA£¨x0£¬y0£©£¨y0¡Ù0£©ÔÚÍÖÔ²CÉÏ£¬ÈôµãNÓëµãA¹ØÓÚÔµã¶Ô³Æ£¬Á¬½ÓAF2²¢ÑÓ³¤ÓëÍÖÔ²CµÄÁíÒ»¸ö½»µãΪM£¬Á¬½ÓMN£¬Çó¡÷AMNÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬ÓÖb2=a2-c2=c2£¬½«£¨1£¬-$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬½âµÃc=1£¬¼´¿ÉÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©ÉèÖ±ÏßAMµÄ·½³ÌÊÇx=my+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Çó³ö|AM|£¬Çó³öµãO£¨0£¬0£©µ½Ö±ÏßAMµÄ¾àÀ룬¿ÉµÃ¡÷OAMµÄÃæ»ý£¬ÀûÓûù±¾²»µÈʽ£¬¼´¿ÉÇó¡÷OAMµÄÃæ»ýµÄ×î´óÖµ£®¡÷AMNÃæ»ýµÄ×î´óÖµÊÇ¡÷OAMµÄÃæ»ýµÄ×î´óÖµµÄ2±¶£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬
b2=a2-c2=c2£¬
½«£¨1£¬-$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬
½âµÃ£ºc=1£¬
Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÍÖÔ²µÄÓÒ½¹µãF£¨1£¬0£©£¬ÉèÖ±ÏßAMµÄ·½³ÌÊÇx=my+1£¬Óë$\frac{{x}^{2}}{2}+{y}^{2}=1$ÁªÁ¢£¬
¿ÉµÃ£¨m2+2£©y2+2my-1=0£¬
ÉèA£¨x1£¬y1£©£¬M£¨x2£¬y2£©£¬Ôòx1=my1+1£¬x2=my2+1£¬
ÓÚÊÇ|AM|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\frac{2\sqrt{2}£¨{m}^{2}+1£©}{{m}^{2}+2}$£¬µãO£¨0£¬0£©µ½Ö±ÏßMNµÄ¾àÀëd=$\frac{1}{\sqrt{{m}^{2}+1}}$£®
ÓÚÊÇ¡÷AMNµÄÃæ»ýs=2sOAM=|MN|d=$\frac{2\sqrt{2£¨{m}^{2}+1£©}}{{m}^{2}+2}$=2$\sqrt{\frac{2}{{m}^{2}+1+\frac{1}{{m}^{2}+1}+2}}$£®
¡ß${m}^{2}+1+\frac{1}{{m}^{2}+1}¡Ý2$£¬¡à¡÷AMNµÄÃæ»ýS$¡Ü2¡Á\sqrt{\frac{2}{2+2}}=\sqrt{2}$£®µ±ÇÒ½öµ±¼´m=0ʱȡµ½×î´óÖµ$\sqrt{2}$£®
µãÆÀ ´úÈë·¨Çó¹ì¼£·½³Ì¹Ø¼üÊÇÈ·¶¨×ø±êÖ®¼äµÄ¹ØÏµ£¬Ö±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµÎÊÌâ³£³£ÐèÒªÁªÁ¢·½³Ì×飬ÀûÓÃΤ´ï¶¨Àí£®ÊôÓÚÖеµÌ⣮
| A£® | Ç¡ÄÜ×÷Ò»¸ö | B£® | ÖÁ¶àÄÜ×÷Ò»¸ö | C£® | ÖÁÉÙÄÜ×÷Ò»¸ö | D£® | ²»´æÔÚ |
| A£® | 20 | B£® | 40 | C£® | 80 | D£® | 160 |