题目内容

4.已知点P(1,$\frac{3}{2}$)是椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上一点,点A,B是椭圆上两个动点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=3$\overrightarrow{PO}$,则直线AB的斜率为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

分析 设A(x1,y1),B(x2,y2),由向量知识求出${x}_{1}+{x}_{2}=-1,{y}_{1}+{y}_{2}=-\frac{3}{2}$,把A,B代入椭圆方程,利用点差法能求出直线AB的斜率.

解答 解:设A(x1,y1),B(x2,y2),
∵$\overrightarrow{PA}$+$\overrightarrow{PB}$=3$\overrightarrow{PO}$,点P(1,$\frac{3}{2}$),
∴$({x}_{1}-1,{y}_{1}-\frac{3}{2})+({x}_{2}-1,{y}_{2}-\frac{3}{2})$=3(-1,-$\frac{3}{2}$),
∴${x}_{1}+{x}_{2}=-1,{y}_{1}+{y}_{2}=-\frac{3}{2}$,
把A,B代入椭圆方程,得:
$\left\{\begin{array}{l}{3{{x}_{1}}^{2}+4{{y}_{1}}^{2}=12}\\{3{{x}_{2}}^{2}+4{{y}_{2}}^{2}=12}\end{array}\right.$,
两式相减,得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$,
∵x1+x2=-1,${y}_{1}+{y}_{2}=-\frac{3}{2}$,
∴${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$.
故选:A.

点评 本题考查直线的斜率的求法,是基础题,解题时要认真审题,注意点差法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网