题目内容
4.已知点P(1,$\frac{3}{2}$)是椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上一点,点A,B是椭圆上两个动点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=3$\overrightarrow{PO}$,则直线AB的斜率为( )| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 设A(x1,y1),B(x2,y2),由向量知识求出${x}_{1}+{x}_{2}=-1,{y}_{1}+{y}_{2}=-\frac{3}{2}$,把A,B代入椭圆方程,利用点差法能求出直线AB的斜率.
解答 解:设A(x1,y1),B(x2,y2),
∵$\overrightarrow{PA}$+$\overrightarrow{PB}$=3$\overrightarrow{PO}$,点P(1,$\frac{3}{2}$),
∴$({x}_{1}-1,{y}_{1}-\frac{3}{2})+({x}_{2}-1,{y}_{2}-\frac{3}{2})$=3(-1,-$\frac{3}{2}$),
∴${x}_{1}+{x}_{2}=-1,{y}_{1}+{y}_{2}=-\frac{3}{2}$,
把A,B代入椭圆方程,得:
$\left\{\begin{array}{l}{3{{x}_{1}}^{2}+4{{y}_{1}}^{2}=12}\\{3{{x}_{2}}^{2}+4{{y}_{2}}^{2}=12}\end{array}\right.$,
两式相减,得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$,
∵x1+x2=-1,${y}_{1}+{y}_{2}=-\frac{3}{2}$,
∴${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$.
故选:A.
点评 本题考查直线的斜率的求法,是基础题,解题时要认真审题,注意点差法的合理运用.
| A. | 当二面角A1-BD-C为直二面角时.A1B与CD所成角为$\frac{π}{3}$ | |
| B. | 当二面角A1-BD-C为$\frac{π}{3}$.A1B与平面BCD所成角的正弦值为$\frac{3}{4}$ | |
| C. | 当V${\;}_{{A}_{1}-BCD}$=$\frac{\sqrt{3}}{2}$时,二面角A1-BD-C为$\frac{π}{3}$ | |
| D. | 当二面角A1-BD-C为直二面角时.平面A1BC⊥A1DC |