ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º
£½1(a>b>0)µÄÁ½¸ö½¹µãF1£¬F2ºÍÉÏÏÂÁ½¸ö¶¥µãB1£¬B2ÊÇÒ»¸ö±ß³¤Îª2ÇÒ¡ÏF1B1F2Ϊ60¡ãµÄÁâÐεÄËĸö¶¥µã£®
(1)ÇóÍÖÔ²CµÄ·½³Ì£»
(2)¹ýÓÒ½¹µãF2µÄбÂÊΪk(k¡Ù0)µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚE¡¢FÁ½µã£¬AΪÍÖÔ²µÄÓÒ¶¥µã£¬Ö±ÏßAE£¬AF·Ö±ð½»Ö±Ïßx£½3ÓÚµãM£¬N£¬Ïß¶ÎMNµÄÖеãΪP£¬¼ÇÖ±ÏßPF2µÄбÂÊΪk¡ä£¬ÇóÖ¤£º k¡¤k¡äΪ¶¨Öµ£®
(1)ÇóÍÖÔ²CµÄ·½³Ì£»
(2)¹ýÓÒ½¹µãF2µÄбÂÊΪk(k¡Ù0)µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚE¡¢FÁ½µã£¬AΪÍÖÔ²µÄÓÒ¶¥µã£¬Ö±ÏßAE£¬AF·Ö±ð½»Ö±Ïßx£½3ÓÚµãM£¬N£¬Ïß¶ÎMNµÄÖеãΪP£¬¼ÇÖ±ÏßPF2µÄбÂÊΪk¡ä£¬ÇóÖ¤£º k¡¤k¡äΪ¶¨Öµ£®
£¨1£©
£½1£¨2£©£
(1)½â¡¡ÓÉÌõ¼þÖªa£½2£¬b£½
£¬¹ÊËùÇóÍÖÔ²·½³ÌΪ
£½1.
(2)Ö¤Ã÷¡¡Éè¹ýµãF2(1,0)µÄÖ±Ïßl·½³ÌΪ£ºy£½k(x£1)£¬ÉèµãE(x1£¬y1)£¬µãF(x2£¬y2)£¬½«Ö±Ïßl·½³Ìy£½k(x£1)´úÈëÍÖÔ²CµÄ·½³Ì
£½1£¬ÕûÀíµÃ£º(4k2£«3)x2£8k2x£«4k2£12£½0£¬ÒòΪµãF2ÔÚÍÖÔ²ÄÚ£¬ËùÒÔÖ±ÏßlºÍÍÖÔ²Ïཻ£¬¦¤>0ºã³ÉÁ¢£¬ÇÒx1£«x2£½
£¬x1x2£½
.
Ö±ÏßAEµÄ·½³ÌΪ£ºy£½
(x£2)£¬Ö±ÏßAFµÄ·½³ÌΪ£ºy£½
(x£2)£¬Áîx£½3µÃµãM
£¬N
£¬¡àµãP×ø±êΪ
£¬
Ö±ÏßPF2µÄбÂÊΪk¡ä£½
£½
£½
¡¤
.
½«x1£«x2£½
£¬x1x2£½
´úÈëÉÏʽµÃ£º
k¡ä£½
£½
.
ËùÒÔk¡¤k¡äΪ¶¨Öµ£
.
(2)Ö¤Ã÷¡¡Éè¹ýµãF2(1,0)µÄÖ±Ïßl·½³ÌΪ£ºy£½k(x£1)£¬ÉèµãE(x1£¬y1)£¬µãF(x2£¬y2)£¬½«Ö±Ïßl·½³Ìy£½k(x£1)´úÈëÍÖÔ²CµÄ·½³Ì
Ö±ÏßAEµÄ·½³ÌΪ£ºy£½
Ö±ÏßPF2µÄбÂÊΪk¡ä£½
½«x1£«x2£½
k¡ä£½
ËùÒÔk¡¤k¡äΪ¶¨Öµ£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿