题目内容
已知函数
,曲线
在点
处的切线方程为
.
(1)求
的值;
(2)求
在
上的最大值.
(1)
;(2)
.
解析试题分析:(1)将切点
代入切线方程
确定
的值,求
,由切线方程
,可知
,列出关于
的方程组即可求解;(2)由(1)确定的
,确定
,用导数确定
在区间
的极大值与极小值,然后比较极大值、端点值
,即可得到函数
在区间
的最大值.
试题解析:(1)依题意可知点
为切点,代入切线方程
可得![]()
所以
即![]()
又由
,得
而由切线方程
的斜率可知![]()
所以
即![]()
联立
7分
解得
,
,
8分
(2)由(1)知
9分
令
,得
或
10分
当
变化时,
的变化如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
1 ![]()
+ 0 - 0
练习册系列答案
随堂1加1导练系列答案
零距离学期系统总复习期末暑假衔接合肥工业大学出版社系列答案
期末冲刺100分创新金卷完全试卷系列答案
北大绿卡刷题系列答案
五州图书超越假期暑假内蒙古大学出版社系列答案
冲刺名校小考系列答案
黄冈中考考点突破系列答案
初中能力测试卷系列答案
智慧学堂数法题解新教材系列答案
小升初实战训练系列答案
相关题目