题目内容
(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
组成数对(
,并构成函数
(Ⅰ)写出所有可能的数对(
,并计算
,且
的概率;
(Ⅱ)求函数
在区间[
上是增函数的概率.
(Ⅰ)写出所有可能的数对(
(Ⅱ)求函数
(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15个.P(A)=
;
(Ⅱ)P(B)=
=
。
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15个.P(A)=
(Ⅱ)P(B)=
试题分析:(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15个. ……2分
设事件“a≥2,且b≤3”为A, ……3分
则事件A包含的基本事件有(2,-1),(2,1),(2,2),(2,3),(3,-1),(3,1),(3,2),(3,3)共8个, ……4分
所以P(A)=
(Ⅱ)设事件“f(x)=ax2-4bx+1在区间[1,+∞)上为增函数”为B,因函数f(x)=ax2-4bx+1的图象的对称轴为x=
且a>0,
所以要使事件B发生,只需
由满足题意的数对有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5个,……10分
∴P(B)=
点评:综合题,古典概型概率的计算,关键是明确基本事件总数及导致事件发生的基本事件数,根据题中条件,首先得到a,b的关系。
练习册系列答案
相关题目