题目内容
【题目】已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线与椭圆C交于不同的两点,且点M到直线l的距离为
,求直线l的方程.
【答案】(1)
=1,(2) x-y-1=0
【解析】
(1)设椭圆
的方程为
,由椭圆经过点
,
,利用待定系数法即可得到椭圆
的方程;
(2)设直线
方程为:
,联立
,得
,由点到直线的距离公式即可得到直线
的方程.
(1)设椭圆C的方程为mx2+ny2=1(m>0,n>0,m≠n),由题意得
解得
∴椭圆C的方程为
=1.
(2)由题意可设直线l的方程为y=x+m,将其代入椭圆方程,
得5x2+8mx+4m2-20=0.
则Δ=(8m)2-4×5(4m2-20)=-16m2+400>0,
∴-5<m<5.
又点M(4,1)到直线l的距离为![]()
![]()
∴m=-1或m=-5(舍去).
∴直线l的方程为x-y-1=0.
【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以如表:
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量 |
|
| 1 |
|
|
经分析发现,可用线性回归模型拟合当地该商品销量
千件
与返还点数t之间的相关关系
请用最小二乘法求y关于t的线性回归方程
,并预测若返回6个点时该商品每天销量;
若节日期间营销部对商品进行新一轮调整
已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间
|
|
|
|
|
|
|
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
求这200位拟购买该商品的消费者对返点点数的心理预期值X的样本平均数及中位数的估计值
同一区间的预期值可用该区间的中点值代替;估计值精确到
;
将对返点点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量X,求X的分布列及数学期望.
参考公式及数据:
,
;
.
【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:
学时数 |
|
|
|
|
|
|
|
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);
(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.
(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下
列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | |||
女性 | |||
合计 | 100 |
附:
,![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |