题目内容
设数列{an},a1=
,若以a1,a2,…,an为系数的二次方程:an-1x2-anx+1=0(n∈N*且n≥2)都有根α、β满足3α-αβ+3β=1.
(1)求证:{an-
}为等比数列;
(2)求an;
(3)求{an}的前n项和Sn.
| 5 |
| 6 |
(1)求证:{an-
| 1 |
| 2 |
(2)求an;
(3)求{an}的前n项和Sn.
(1)证明:∵α+β=
,αβ=
代入3α-αβ+3β=1得an=
an-1+
,
∴
=
=
为定值.
∴数列{an-
}是等比数列.
(2)∵a1-
=
-
=
,
∴an-
=
×(
)n-1=(
)n.
∴an=(
)n+
.
(3)Sn=(
+
++
)+
=
+
=
-
.
| an |
| an-1 |
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| 3 |
∴
an-
| ||
an-1-
|
| ||||||
an-1-
|
| 1 |
| 3 |
∴数列{an-
| 1 |
| 2 |
(2)∵a1-
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=(
| 1 |
| 3 |
| 1 |
| 2 |
(3)Sn=(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| n |
| 2 |
| ||||
1-
|
| n |
| 2 |
| n+1 |
| 2 |
| 1 |
| 2×3n |
练习册系列答案
相关题目