题目内容
9.已知x>0,求证:x3+y2+3≥3x+2y.分析 x3+y2+3-3x-2y=(y2-2y+1)+(x3-3x+2)=(y-1)2+(x3-1-3x+3)=(y-1)2+(x-1)2(x+2)即可证明
解答 证明:∵x3+y2+3-3x-2y=(y2-2y+1)+(x3-3x+2)=(y-1)2+(x3-1-3x+3)
=(y-1)2+[(x-1)(x2+x+1)-3(x-1)]
=(y-1)2+(x-1)(x2+x-2)
=(y-1)2+(x-1)(x-1)(x+2)
=(y-1)2+(x-1)2(x+2)
∵x>0,∴(y-1)2+(x-1)2(x+2)≥0
∴x3+y2+3≥3x+2y.
点评 本题考查了做差法证明不等式,属于中档题.
练习册系列答案
相关题目
19.为了得到函数y=cos2x的图象,可将函数$y=sin({2x-\frac{π}{6}})$的图象( )
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{3}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向左平移$\frac{π}{3}$个单位长度 |
4.全集U={0,1,3,5,6,8},集合A={ 1,5,8 },B={2},则集合(∁UA)∪B=( )
| A. | {0,2,3,6} | B. | { 0,3,6} | C. | {2,1,5,8} | D. | ∅ |
1.下列命题中正确的是( )
| A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$ | B. | 若|$\overrightarrow{a}$|=1,则$\overrightarrow{a}$=1 | C. | 若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{a}$∥$\overrightarrow{b}$ |