题目内容
双曲线
-
=1的左、右焦点分别为F1,F2,P是准线上一点,且PF1⊥PF2,|PF1|•|PF2|=4ab,则双曲线的离心率是 .
| x2 |
| a2 |
| y2 |
| b2 |
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意可得,||PF1|-|PF2||=2a,|F1F2|=2c;|PF1|•|PF2|=4ab;c2=a2+b2;利用勾股定理化简求值.
解答:
解:由题意可得,
||PF1|-|PF2||=2a,|F1F2|=2c;
|PF1|•|PF2|=4ab;c2=a2+b2;
∵|PF1|2+|PF2|2=|F1F2|2;
∴||PF1|-|PF2||2+2|PF1|•|PF2|=|F1F2|2;
即4a2+8ab=4c2;
8ab=4b2;
故
=2;
故e=
=
=
;
故答案为:
.
||PF1|-|PF2||=2a,|F1F2|=2c;
|PF1|•|PF2|=4ab;c2=a2+b2;
∵|PF1|2+|PF2|2=|F1F2|2;
∴||PF1|-|PF2||2+2|PF1|•|PF2|=|F1F2|2;
即4a2+8ab=4c2;
8ab=4b2;
故
| b |
| a |
故e=
| c |
| a |
|
| 5 |
故答案为:
| 5 |
点评:本题考查了双曲线的定义与性质的应用,属于基础题.
练习册系列答案
相关题目
设等边△ABC边长为6,若
=3
,
=
,则
•
等于( )
| BC |
| BE |
| AD |
| DC |
| BD |
| AE |
A、-6
| ||
B、6
| ||
| C、-18 | ||
| D、18 |
双曲线
-
=1上到定点(5,0)的距离是9的点的个数是( )
| x2 |
| 16 |
| y2 |
| 9 |
| A、0个 | B、2个 | C、3个 | D、4个. |
已知函数f(x)是定义在R上的奇函数,且对任意x1、x2∈[1,a](a>1),当x1>x2时,都有f(x2)>f(x1)>0,则下列不等式不一定成立的是( )
| A、f(a)>f(0) | ||||
B、f(
| ||||
C、f(
| ||||
D、f(
|