ÌâÄ¿ÄÚÈÝ
3£®¸ø³öÏÂÁÐÃüÌ⣺¢Ùº¯Êý$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$¼ÈÊÇÆæº¯Êý£¬ÓÖÊÇżº¯Êý£»
¢Úf£¨x£©=xºÍ$g£¨x£©=\frac{x^2}{x}$Ϊͬһº¯Êý£»
¢Û¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬Ôòf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Üº¯Êý$y=\frac{x}{{2{x^2}+1}}$µÄÖµÓòΪ$[-\frac{{\sqrt{2}}}{4}£¬\frac{{\sqrt{2}}}{4}]$£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢܣ®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
·ÖÎö »¯¼òº¯Êý½âÎöʽÅжϢ٣»Óɺ¯ÊýµÄ¶¨ÒåÓò²»Í¬ÅжϢڣ»¾ÙÀý˵Ã÷¢Û´íÎó£»·ÖÀàÇó½âº¯ÊýµÄÖµÓòÅжϢܣ®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÓÉ$\left\{\begin{array}{l}{1-x¡Ý0}\\{x-1¡Ý0}\end{array}\right.$£¬µÃx=1£¬¡à$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$=0£¨x=1£©£¬
Ôòº¯Êý$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$¼È²»ÊÇÆæº¯Êý£¬Ò²²»ÊÇżº¯Êý£®¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬f£¨x£©=xµÄ¶¨ÒåÓòΪR£¬$g£¨x£©=\frac{x^2}{x}$µÄ¶¨ÒåÓòΪ{x|x¡Ù0}£¬¡àf£¨x£©=xºÍ$g£¨x£©=\frac{x^2}{x}$²»ÊÇͬһº¯Êý£®¹Ê¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬Ôòf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬´íÎó£®Èç$f£¨x£©=\left\{\begin{array}{l}{0£¬x=0}\\{\frac{1}{x}£¬x¡Ù0}\end{array}\right.$£»
¶ÔÓڢܣ¬º¯Êý$y=\frac{x}{{2{x^2}+1}}$£¬µ±x=0ʱ£¬y=0£»µ±x£¾0ʱ£¬y=$\frac{1}{2x+\frac{1}{x}}¡Ê£¨0£¬\frac{\sqrt{2}}{4}]$£»µ±x£¼0ʱ£¬$y=\frac{1}{2x+\frac{1}{x}}¡Ê[-\frac{\sqrt{2}}{4}£¬0£©$£®
¡àº¯Êý$y=\frac{x}{{2{x^2}+1}}$µÄÖµÓòΪ$[-\frac{{\sqrt{2}}}{4}£¬\frac{{\sqrt{2}}}{4}]$£®¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ü£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁ˺¯ÊýµÄÆæÅ¼ÐԺ͵¥µ÷ÐÔ£¬ÑµÁ·Á˺¯ÊýÖµÓòµÄÇ󷨣¬ÊÇÖеµÌ⣮
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
| A£® | $[\frac{e}{e-3}£¬1]$ | B£® | $[\frac{e}{e-3}£¬1£©$ | C£® | $[\frac{1-e}{3-e}£¬1]$ | D£® | $[\frac{1-e}{3-e}£¬1£©$ |
| A£® | Ïཻ | B£® | ÍâÇÐ | C£® | ÄÚÇÐ | D£® | ÏàÀë |