题目内容
已知函数g(x)=(1)求实数a、b的值;
(2)设h(x)=g(x)-
【答案】分析:(1)将f(x)=acos2(x+
)+b化为:f(x)=
cos(2x+
)+
+b,函数y=g(x)的图象按向量a=(-
,
)平移得到f(x)=
cos(2x+
)+
,从而可求得实数a、b的值;
(2)可求得h(x)=sin(2x+
)-
.当2x+
=2kπ-
,h(x)有最小值.
解答:解:(1)∵f(x)=acos2(x+
)+b=
cos(2x+
)+
+b,①
g(x)=
sin(2x+
)的图象按向量a=(-
,
)平移得到
f(x)=
sin[2(x+
)+
]+
=
cos(2x+
)+
,②
比较①②可得:a=1,b=0;
(2)∵h(x)=g(x)-
f(x)=
sin(2x+
)-
cos(2x+
)-
=sin(2x+
)-
.
当2x+
=2kπ-
,即x=kπ-
(k∈Z)时,h(x)有最小值,h(x)min=-
.
点评:本题考查三角函数的化简与求值,着重考查降幂公式,辅助角公式及正像函数的性质的综合应用,属于难题.
(2)可求得h(x)=sin(2x+
解答:解:(1)∵f(x)=acos2(x+
g(x)=
f(x)=
比较①②可得:a=1,b=0;
(2)∵h(x)=g(x)-
=sin(2x+
当2x+
点评:本题考查三角函数的化简与求值,着重考查降幂公式,辅助角公式及正像函数的性质的综合应用,属于难题.
练习册系列答案
相关题目