题目内容
若a1>0,a1≠1,an+1=| 2an |
| 1+an |
(1)求证:an+1≠an;
(2)令a1=
| 1 |
| 2 |
分析:(1)采用反证法证明,先假设两种相等,代入已知的等式中即可求出an的值为常数0或1,进而得到此数列为是0或1的常数列,与已知a1>0,a1≠1矛盾,所以假设错误,两种不相等;
(2)把n=1及a1=
代入已知的等式即可求出a2的值,把n=2及a2的值代入已知的等式即可求出a3的值,把n=3及a3的值代入已知等式即可求出a4的值,把n=4及a4的值代入已知的等式即可求出a5的值,然后把求出的五项的值变形后,即可归纳总结得到这个数列的通项公式an.
(2)把n=1及a1=
| 1 |
| 2 |
解答:解:(1)证明:若an+1=an,
即
=an,解得an=0或1.
从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)由a1=
,得到a2=
=
=
,
a3=
=
=
,
a4=
=
=
,
a5=
=
=
,
…,
则an=
(n∈N*).
即
| 2an |
| 1+an |
从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)由a1=
| 1 |
| 2 |
2×
| ||
1+
|
| 2 |
| 3 |
| 22-1 |
| 22-1+1 |
a3=
2×
| ||
1+
|
| 4 |
| 5 |
| 23-1 |
| 23-1+1 |
a4=
2×
| ||
1+
|
| 8 |
| 9 |
| 24-1 |
| 24-1+1 |
a5=
2×
| ||
1+
|
| 16 |
| 17 |
| 25-1 |
| 25-1+1 |
…,
则an=
| 2n-1 |
| 2n-1+1 |
点评:此题考查学生会利用反证法对命题进行证明的能力,会根据一组数据的特点归纳总结得出一般性的规律,是一道中档题.
练习册系列答案
相关题目