题目内容

15.己知等差数列{an}满足a1=1,a4=7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{cn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn$<\frac{1}{2}$.

分析 (I)利用等差数列的通项公式即可得出;
(II)${c_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”即可证明右边;利用单调性即可证明左边.

解答 解:(I)设{an}的公差为d,a1=1,b4=1+3d=7,
∴d=2.
∴an=1+(n-1)×2=2n-1.
(II)${c_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
∵n∈N*,∴${T_n}=\frac{1}{2}({1-\frac{1}{2n+1}})<\frac{1}{2}$;
${T_n}-{T_{n-1}}=\frac{n}{2n+1}-\frac{n-1}{2n-1}=\frac{1}{{({2n+1})({2n-1})}}>0$,
∴数列{Tn}是一个递增数列,
∴${T_n}≥{T_1}=\frac{1}{3}$.
综上所述,$\frac{1}{3}≤{T_n}<\frac{1}{2}$.

点评 本题考查了等差数列的通项公式、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网