题目内容

11.已知0<α<π,sinα+cosα=$\frac{1}{5}$.
(1)求tanα的值;
(2)求sin2α-3sinαcosα-4cos2α的值.

分析 (1)利用同角三角函数的基本关系求得sinα-cosα的值,解得sinα和cosα的值,可得tanα的值.
(2)根据sin2α-3sinαcosα-4cos2α=$\frac{{tan}^{2}α-3tanα-4}{{tan}^{2}α+1}$,求得结果.

解答 解:(1)∵$sinα+cosα=\frac{1}{5},0<α<π$,∴$1+2sinαcosα=\frac{1}{25}$,
求得$2sinαcosα=-\frac{24}{25}$,∴θ为钝角,∴sinθ>0,cosθ<0,
可得$sinα-cosα=\sqrt{{{({sinα-cos{α^{\;}}})}^2}}=\sqrt{1-2sinαcosα}=\frac{7}{5}$,求得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$.
(2)sin2α-3sinαcosα-4cos2α=$\frac{{sin}^{2}α-3sinαcosα-{4cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-3tanα-4}{{tan}^{2}α+1}$
=$\frac{16}{25}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网