题目内容
若(x2-
)5的展开式中不含xa(a∈R)的项,则a的值可能为( )
| 1 |
| x |
分析:先求二项展开式的通项为:Tr+1=
x10-2r(-
)r=(-1)r
x10-3r,然后根据r的可能取值,可求10-3r的值,进而可判断a
| C | r 5 |
| 1 |
| x |
| C | r 5 |
解答:解:由题意可得,二项展开式的通项为:Tr+1=
x10-2r(-
)r=(-1)r
x10-3r
∵r=0,1,2,3,4,5
∴10-3r=10,7,4,1,-2,-5
∴a=2
故选D
| C | r 5 |
| 1 |
| x |
| C | r 5 |
∵r=0,1,2,3,4,5
∴10-3r=10,7,4,1,-2,-5
∴a=2
故选D
点评:本题主要考查了利用二项展开式的通项求解二项展开式的项,解题的关键是熟练应用基本公式
练习册系列答案
相关题目