题目内容
设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a2n+1=b2n+1,则______.
因为等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1,
所以an+1-bn+1=
-
=
=
≥0.
即 an+1≥bn+1.
故答案为:an+1≥bn+1.
所以an+1-bn+1=
| a1+a2n+1 |
| 2 |
| b1•b2n+1 |
=
a1+a2n+1-2
| ||
| 2 |
=
(
| ||||
| 2 |
即 an+1≥bn+1.
故答案为:an+1≥bn+1.
练习册系列答案
相关题目