题目内容
设an是(3-
)n(n∈N*且n≥2)的展开式中x的系数,则
(
+
+…+
)=
| x |
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 3n |
| an |
18
18
.分析:先求出an =Cn2 3n-2,化简
=18(
-
),代入要求的式子化简运算求得结果.
| 3n |
| an |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:二项式(3-
)n(n∈N*且n≥2)的展开式的通项公式 Tr+1 =
3n-r(-1)rx
,
令r=2 可得x的系数 an =Cn2 3n-2,∴
=
=
=18(
-
).
∴
(
+
+…+
)=
18[(1-
)+(
-
)+…+(
-
) ]=
18(1-
)=18,
故答案为:18.
| x |
| C | r n |
| r |
| 2 |
令r=2 可得x的系数 an =Cn2 3n-2,∴
| 3n |
| an |
| 3n | ||
|
| 18 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 3n |
| an |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| lim |
| n→∞ |
| 1 |
| n |
故答案为:18.
点评:本题主要考查二项展开式的通项公式,求展开式中某项的系数,用裂项法进行数列求和,求数列的极限,求出
=
18(
-
),是解题的关键.
| 3n |
| an |
18(
| 1 |
| n-1 |
| 1 |
| n |
练习册系列答案
相关题目