题目内容
设an是(3-
)n(n=2,3,4,5,…)展开式中x一次项系数,则
(
+
+
+…+
)=______.
| x |
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 34 |
| a4 |
| 3n |
| an |
展开式的通项为 Tr+1=(-1)r3n-r
x
令
=1得r=2
∴an=3n-2Cn2.
=
=9×
=
=18×(
-
),
∴
(
+
+
+…+
)
=
{18×[(1-
) +(
-
)+(
-
)+…+(
-
)]}
=
[18×(1-
)]
=18.
故答案为:18.
| C | rn |
| r |
| 2 |
令
| r |
| 2 |
∴an=3n-2Cn2.
| 3n |
| an |
| 3n | ||
|
| 2 |
| n(n-1) |
| 18 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| lim |
| n→∞ |
| 32 |
| a2 |
| 33 |
| a3 |
| 34 |
| a4 |
| 3n |
| an |
=
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| lim |
| n→∞ |
| 1 |
| n |
=18.
故答案为:18.
练习册系列答案
相关题目