题目内容

3.记sin(-80°)=k,那么tan100°=(  )
A.$\frac{{\sqrt{1-{k^2}}}}{k}$B.$-\frac{{\sqrt{1-{k^2}}}}{k}$C.$\frac{k}{{\sqrt{1-{k^2}}}}$D.$-\frac{k}{{\sqrt{1-{k^2}}}}$

分析 先利用同角三角函数的基本关系式以及诱导公式求cos80°,然后化切为弦,即可求得tan100°.

解答 解:∵sin(-80°)=k,∴sin80°=-k,
∴cos80°=$\sqrt{1-si{n}^{2}80°}=\sqrt{1-{k}^{2}}$,
∴tan100°=-tan80°=$-\frac{sin80°}{cos80°}=-\frac{-k}{\sqrt{1-{k}^{2}}}=\frac{k}{\sqrt{1-{k}^{2}}}$.
故选:C.

点评 本题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网