题目内容
设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:
(Ⅰ)
的值;
(Ⅱ)cotB+cot C的值.
(Ⅰ)
| a |
| c |
(Ⅱ)cotB+cot C的值.
(Ⅰ)由余弦定理得a2=b2+c2-2bccosA=(
c)2+c2-2•
c•c•
=
c2.
∴
=
.
(Ⅱ)cotB+cotC=
=
=
,
由正弦定理和(Ⅰ)的结论得
=
•
=
•
=
=
.
故cotB+cotC=
.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 7 |
| 9 |
∴
| a |
| c |
| ||
| 3 |
(Ⅱ)cotB+cotC=
| cosBsinC+cosCsinB |
| sinBsinC |
| sin(B+C) |
| sinBsinC |
| sinA |
| sinBsinC |
由正弦定理和(Ⅰ)的结论得
| sinA |
| sinBsinC |
| 1 |
| sinA |
| a2 |
| bc |
| 2 | ||
|
| ||
|
| 14 | ||
3
|
14
| ||
| 9 |
故cotB+cotC=
14
| ||
| 9 |
练习册系列答案
相关题目