题目内容
函数A.
B.
C.
D.
【答案】分析:函数
,当 sin(
-
)=-1时函数取到最小值,此时相位
-
=-
+2kπ,k∈Z,由此求解即可.
解答:解:∵函数
,
∴当 sin(
-
)=-1时函数取到最小值,
∴
-
=-
+2kπ,k∈Z函数,
∴x=-
+4kπ,k∈Z,
∴函数
取得最小值时所对应x的取值集合为{x|x═-
+4kπ,k∈Z}
故选A.
点评:本题考点是三角函数的最值,考查由三角函数的有界性判断出最值取到时相应的自变量所满足的方程,由此方程解出取到最值时自变量的表达式,本题所用知识是三角函数的性质.
解答:解:∵函数
∴当 sin(
∴
∴x=-
∴函数
故选A.
点评:本题考点是三角函数的最值,考查由三角函数的有界性判断出最值取到时相应的自变量所满足的方程,由此方程解出取到最值时自变量的表达式,本题所用知识是三角函数的性质.
练习册系列答案
相关题目