题目内容

在三角形ABC中,若sinA:sinB:sinC=5:7:8,则∠B的大小为(  )
分析:由正弦定理可得三边之比a:b:c=5:7:8,设a=5,则 b=7,c=8,由余弦定理求得cosB的值,可得B的值.
解答:解:∵三角形ABC中,若sinA:sinB:sinC=5:7:8,∴三边之比a:b:c=5:7:8.
设a=5,则 b=7,c=8,由余弦定理可得 cosB=
a2+2-b2 
2ac
=
1
2

故B=
π
3

故选A.
点评:本题主要考查正弦定理、余弦定理的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网