题目内容

已知a+b+c=1,求证:
(1)2(ab+bc+ca)+3
3a2b2c2
≤1
(2)a2+b2+c2
1
3
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:利用条件,两边平方,利用基本不等式,即可证得结论.
解答: 证明:(1)∵a+b+c=1,
∴a2+b2+c2+2(ab+bc+ca)=1,
∴2(ab+bc+ca)+3
3a2b2c2
≤1
(2)∵a+b+c=1,
∴1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2),
∴a2+b2+c2
1
3
点评:本题考查不等式的证明,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网