题目内容
已知{
}是等差数列,且a2=
-1,a4=
+1,则a10=
| 1 |
| an |
| 2 |
| 2 |
-
| ||
| 47 |
-
.
| ||
| 47 |
分析:由题意设数列{
}的公差为d,由
=
+2d,可得公差为d=-1,进而可得
,求其倒数可得答案.
| 1 |
| an |
| 1 |
| a4 |
| 1 |
| a2 |
| 1 |
| a10 |
解答:解:∵a2=
-1,a4=
+1,
∴
=
=
=
+1,
同理可得
=
-1,
由题意设数列{
}的公差为d,
则
=
+2d,解得d=-1,
所以
=
+8d=
-7,
故a10=
=
=-
,
故答案为:-
| 2 |
| 2 |
∴
| 1 |
| a2 |
| 1 | ||
|
| ||||
(
|
| 2 |
同理可得
| 1 |
| a4 |
| 2 |
由题意设数列{
| 1 |
| an |
则
| 1 |
| a4 |
| 1 |
| a2 |
所以
| 1 |
| a10 |
| 1 |
| a2 |
| 2 |
故a10=
| 1 | ||
|
| ||||
(
|
| ||
| 47 |
故答案为:-
| ||
| 47 |
点评:本题考查等差数列的基本运算,属基础题.
练习册系列答案
相关题目