题目内容
已知n是正整数,数列{an }的前n项和为Sn,a1=1,数列{| 1 | an |
(1)求Sn;
(2)证明:(n+1)Tn+1-nTn-1=Tn;
(3)是否存在数列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有数列{bn},若不存在,请说明理由.
分析:(1)由题设知2Sn=nan+an,2Sn+1=(n+1)an+1+an+1,所以
=
,an=
×
×…×
× a1=n,由此能求出Sn=
.
(2)由(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1=
+Tn+1-1=
+Tn+
-1=Tn,知Tn=(n+1)Tn+1-nTn-1.
(3)由Tn=(n+1)Tn+1-nTn-1,知Pn=(n+1)Tn-n,故存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
| an+1 |
| an |
| n+1 |
| n |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1× |
| n(n+1) |
| 2 |
(2)由(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1=
| n |
| n+1 |
| n |
| n+1 |
| 1 |
| n+1 |
(3)由Tn=(n+1)Tn+1-nTn-1,知Pn=(n+1)Tn-n,故存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
解答:解:(1)∵Sn是nan与an的等差中项,
∴2Sn=nan+an,
∴2Sn+1=(n+1)an+1+an+1,
∴2Sn+1-2Sn=2an+1=(n+1)an+1+an+1-nan-an,
化简,得
=
,
∴an=
×
×…×
× a1=n,
∴{an}是等差数列,
∴Sn=
.
(2)证明:∵(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1
=
+Tn+1-1
=
+Tn+
-1=Tn,
∴Tn=(n+1)Tn+1-nTn-1.
(3)解:∵Tn=(n+1)Tn+1-nTn-1,
∴T1+T2+…+Tn=[2T2-T1-1]+[3T3-2T2-1]+…+[(n+1)Tn+1-nTn-1]
=(n+1)Tn+1-T1-n
=(n+1)Tn-n,
∴Pn=(n+1)Tn-n
∴存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
∴2Sn=nan+an,
∴2Sn+1=(n+1)an+1+an+1,
∴2Sn+1-2Sn=2an+1=(n+1)an+1+an+1-nan-an,
化简,得
| an+1 |
| an |
| n+1 |
| n |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1× |
∴{an}是等差数列,
∴Sn=
| n(n+1) |
| 2 |
(2)证明:∵(n+1)Tn+1-nTn-1=n(Tn+1-Tn)+Tn+1-1
=
| n |
| n+1 |
=
| n |
| n+1 |
| 1 |
| n+1 |
∴Tn=(n+1)Tn+1-nTn-1.
(3)解:∵Tn=(n+1)Tn+1-nTn-1,
∴T1+T2+…+Tn=[2T2-T1-1]+[3T3-2T2-1]+…+[(n+1)Tn+1-nTn-1]
=(n+1)Tn+1-T1-n
=(n+1)Tn-n,
∴Pn=(n+1)Tn-n
∴存在数列{bn},使Pn=(bn+1)Tn-bn,且bn=n.
点评:本题考查数列的性质和应用,解题时要认真审题,注意数列的前n项和的求法和数列的证明,解题过程中合理地进行等价转化.
练习册系列答案
相关题目