题目内容
已知a1=1,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n=1,2,3,4,…
(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn是
与
的等差中项,数列{bn}的前n项和为Sn,求证:
≤Sn<
.
(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn是
| 1 |
| an+1 |
| 1 |
| an+3 |
| 3 |
| 8 |
| 1 |
| 2 |
(1)证明:由已知an+1=an2+4an+2,
∴an+1+2=(an+2)2
∵a1=1?an+2>1,两边取对数,得lg(an+1+2)=2lg(an+2)
∴{lg(an+2)}是等比数列,公比为2,首项为lg(a1+2)=lg3
(2)由(1)得lg(an+2)=2n-1lg3=lg32n-1,
∴an=32n-1-2,
∵lgTn=lg[(a1+2)(a2+2)(an+2)]=lg(a1+2)+lg(a2+2)+…+lg(an+2)=
=lg32n-1
∴Tn=32n-1
(3)
∵bn=
(
+
)=
(
+
)=
=
-
=
-
=
-
=
-
显然bn>0,
∴Sn≥S1=
,
又Sn=
-
<
,
∴
≤Sn<
.
∴an+1+2=(an+2)2
∵a1=1?an+2>1,两边取对数,得lg(an+1+2)=2lg(an+2)
∴{lg(an+2)}是等比数列,公比为2,首项为lg(a1+2)=lg3
(2)由(1)得lg(an+2)=2n-1lg3=lg32n-1,
∴an=32n-1-2,
∵lgTn=lg[(a1+2)(a2+2)(an+2)]=lg(a1+2)+lg(a2+2)+…+lg(an+2)=
| (2n-1)lg3 |
| 2-1 |
∴Tn=32n-1
(3)
∵bn=
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| an+3 |
| 1 |
| 2 |
| 1 |
| 32n-1-1 |
| 1 |
| 32n-1+1 |
| 32n-1 |
| 32n-1 |
| 1 |
| 32n-1-1 |
| 1 |
| 32n-1 |
=
| 1 |
| an+1 |
| 1 |
| an+1+1 |
| 1 |
| a1+1 |
| 1 |
| an+1+1 |
| 1 |
| 2 |
| 1 |
| 32n-1 |
显然bn>0,
∴Sn≥S1=
| 3 |
| 8 |
又Sn=
| 1 |
| 2 |
| 1 |
| 32n-1 |
| 1 |
| 2 |
∴
| 3 |
| 8 |
| 1 |
| 2 |
练习册系列答案
相关题目