题目内容
已知等比数列{an}的各项均为正数,且a1+2a2=1,a
=4a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{
}的前n项和.
| 23 |
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{
| 1 |
| bn |
(1)设等比数列{an}的公比为q,由a
=4a2a6得a
=4
,
∴q2=
,由已知an>0,∴q=
,
由a1+2a2=1,得2a1=1,∴a1=
,
∴数列{an}的通项公式为an=
.
(2)bn=log2a1+log2a2+…+log2an=-(1+2+…+n)=-
∴
=-
=-2(
-
),
∴数列{
}的前n项和=-2[(1-
)+(
-
)+…+(
-
)]=-
.
| 23 |
| 23 |
| a | 24 |
∴q2=
| 1 |
| 4 |
| 1 |
| 2 |
由a1+2a2=1,得2a1=1,∴a1=
| 1 |
| 2 |
∴数列{an}的通项公式为an=
| 1 |
| 2n |
(2)bn=log2a1+log2a2+…+log2an=-(1+2+…+n)=-
| n(n+1) |
| 2 |
∴
| 1 |
| bn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目