题目内容
通项公式为an=
的数列{an}的前n项和为
,则项数n为( )
| 2 |
| n(n+1) |
| 9 |
| 5 |
| A.7 | B.8 | C.9 | D.10 |
数列{an}中,an=
=2(
-
),
∴{an}的前n项和sn=2(1-
)+2(
-
)+2(
-
)+…+2(
-
)=2(1-
);
∴2(1-
)=
,
解得n=9,即项数n为9.
故选:C.
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴{an}的前n项和sn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∴2(1-
| 1 |
| n+1 |
| 9 |
| 5 |
解得n=9,即项数n为9.
故选:C.
练习册系列答案
相关题目