题目内容

通项公式为an=
2
n(n+1)
的数列{an}的前n项和为
9
5
,则项数n为(  )
A.7B.8C.9D.10
数列{an}中,an=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴{an}的前n项和sn=2(1-
1
2
)+2(
1
2
-
1
3
)+2(
1
3
-
1
4
)+…+2(
1
n
-
1
n+1
)=2(1-
1
n+1
);
∴2(1-
1
n+1
)=
9
5

解得n=9,即项数n为9.
故选:C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网