题目内容
数列{an}满足:a1=1,an+1=
(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
|
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn<
.
| an+2 |
| an+1 |
(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
| 2 |
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn<
2(2
| ||
| 7 |
分析:(I)先由递推式求出a2,然后用数学归纳法证明;
(Ⅱ)(1)通过作商证明
<1;(2)由(1)可得
<
,即bn+1<
bn,利用迭代法可得bn<
bn-1<(
)2bn-2<…<(
)n-1b1=(
-1)(
)n-1,
利用该结论及等比数列前n项和公式可证明结论;
(Ⅱ)(1)通过作商证明
| bn+1 |
| bn |
| bn+1 |
| bn |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 2 |
| ||
| 2 |
利用该结论及等比数列前n项和公式可证明结论;
解答:解:(Ⅰ)a1=1,a2=
=
,
(1)n=2时,1<a2=
<2,∴n=2时不等式成立;
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
,
∴
<ak+1<
,
∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
=
=
=
•
=
•
=
,
又
<
<1,
∴{bn}是递减数列;
(2)由(1)知:
<
,∴bn+1<
bn,
则bn<
bn-1<(
)2bn-2<…<(
)n-1b1=(
-1)(
)n-1,
所以Sn=b1+b2+b3+…+bn<(
-1)[1+
+(
)2+…+(
)n-1]
=(
-1)
=
[1-(
)n]<
.
| 1+2 |
| 1+1 |
| 3 |
| 2 |
(1)n=2时,1<a2=
| 3 |
| 2 |
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
| 1 |
| ak+1 |
∴
| 4 |
| 3 |
| 3 |
| 2 |
∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
| bn+1 |
| bn |
|an+1-
| ||
|an-
|
|
| ||||
|an-
|
=
| 1 |
| |an+1| |
|an+2-
| ||||
|an-
|
=
| 1 |
| |an+1| |
|an(1-
| ||||||
|an-
|
|
| ||
| |an+1| |
又
|
| ||
| |an+1| |
| ||
| 2 |
∴{bn}是递减数列;
(2)由(1)知:
| bn+1 |
| bn |
| ||
| 2 |
| ||
| 2 |
则bn<
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 2 |
| ||
| 2 |
所以Sn=b1+b2+b3+…+bn<(
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
=(
| 2 |
1-(
| ||||
1-
|
=
2(
| ||||
| 7 |
| ||
| 2 |
2(2
| ||
| 7 |
点评:本题考查数列递推式、数列的函数特性、等比数列前n和公式、数学归纳法等知识,考查学生的推理证明能力.
练习册系列答案
相关题目