题目内容

     如图,正方形与梯形所在的平面互相垂直,,

,点在线段上.

   (I)当点中点时,求证:∥平面

   (II)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.

【考点分析】本小题主要考查空间线面位置关系的基本定理、多面体体积计算、(理)空间向量的应用,本小题主要考查空间想象能力、推理论证能力、运算求解能力.

解:(1)以直线分别为轴、轴、轴建立空间

直角坐标系,则,所以.

————————2分

    又,是平面的一个法向量.

    ∵

    ∴∥平面——————4分

     (2)设,则

,则,.——6分

 设是平面的一个法向量,则

         

      即 

又由题设,是平面的一个法向量,——————8分

∴  ————10分

即点中点,此时,为三棱锥的高,

∴      ————————————12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网