题目内容

3.经过点M(2,1)作直线l交双曲线x2-$\frac{y^2}{2}$=1于A,B两点,且M为AB的中点,则直线l的方程为(  )
A.4x+y+7=0B.4x+y-7=0C.4x-y-7=0D.4x-y+7=0

分析 设A(x1,y1),B(x2,y2),代入双曲线的方程,运用点差法,结合中点坐标公式和直线的斜率公式,由点斜式方程可得直线AB的方程,代入双曲线的方程,由判别式的符号,即可得到判断直线的存在性.

解答 解:设A(x1,y1),B(x2,y2),
可得x12-$\frac{{{y}_{1}}^{2}}{2}$=1,x22-$\frac{{{y}_{2}}^{2}}{2}$=1,
两式相减可得,(x1-x2)(x1+x2)-$\frac{{(y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{2}$=0,
M为AB的中点,即有x1+x2=4,y1+y2=2,
可得直线AB的斜率为k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{2({x}_{1}+{x}_{2})}{{y}_{1}+{y}_{2}}$=$\frac{2×4}{2}$=4,
即有直线AB的方程为y-1=4(x-2),即为4x-y-7=0.
由y=4x-7代入双曲线的方程x2-$\frac{y^2}{2}$=1,可得14x2-56x+51=0,
即有△=562-4×14×51=280>0,故存在直线AB,其方程为4x-y-7=0.
故选:C.

点评 本题考查双曲线的中点弦所在直线方程的求法,注意运用点差法,注意检验直线的方程的存在性,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网