题目内容
3.用分析法证明:当x≥4时,$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$.分析 分析使不等式$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$成立的充分条件,一直分析到使不等式成立的充分条件显然具备,从而不等式得证.
解答 证明:当x≥4时
要证$\sqrt{x-3}+\sqrt{x-2}>\sqrt{x-4}+\sqrt{x-1}$
只需证${(\sqrt{x-3}+\sqrt{x-2})^2}>{(\sqrt{x-4}+\sqrt{x-1})^2}$------------(2分)
只需证$x-3+2\sqrt{(x-3)(x-2)}+x-2>x-4+2\sqrt{(x-4)(x-1)}+x-1$-----------(5分)
即证$\sqrt{(x-3)(x-2)}>\sqrt{(x-4)(x-1)}$
只需证x2-5x+6>x2-5x+4
即证6>4
显然上式成立,------------------------(9分)
所以原不等式成立,即$\sqrt{x-3}-\sqrt{x-1}>\sqrt{x-4}-\sqrt{x-2}$------------(10分)
点评 本题主要考查利用分析法证明不等式,利用用分析法证明不等式的关键是寻找使不等式成立的充分条件,直到使不等式成立的充分条件已经显然具备为止,属于中档题.
练习册系列答案
相关题目
14.若{an}是正项递增等比数列,Tn表示其前n项之积,且T9=T19,则当Tn取最小值时,n的值为( )
| A. | 9 | B. | 14 | C. | 19 | D. | 24 |
18.已知点A是抛物线M:y2=2px(p>0)与圆C:x2+(y-4)2=a2在第一象限的公共点,且点A到抛物线M焦点F的距离为a,若抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,O为坐标原点,则直线OA被圆C所截得的弦长为( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{7\sqrt{2}}{3}$ | D. | $\frac{7\sqrt{2}}{6}$ |
15.已知a,b>0,若圆x2+y2=b2与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1有公共点,则该双曲线的离心率的取值范围是( )
| A. | [$\sqrt{2}$,+∞) | B. | (1,$\sqrt{2}$] | C. | (1,$\sqrt{3}$) | D. | ($\sqrt{2}$,2) |
12.若双曲线x2+2my2=1的两条渐近线互相垂直,则其一个焦点为( )
| A. | (0,1) | B. | (-1,0) | C. | (0,$\sqrt{2}$) | D. | (-$\sqrt{2}$,0) |
13.
函数f(x)=Asin(ωx+φ)(A>0,ω>0),|φ|<$\frac{π}{2}$)的图象如图所示,则f(0)等于( )
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |