题目内容

在△ABC中,边a,b,c的对角分别为A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范围.
分析:(1)把正弦定理代入已知条件可得 a2+c2-b2=ac,再由余弦定理求得,cosB=
a2+c2-b2
2ac
=
1
2
,由此可得 B的值.
(2)△ABC中,由B=
π
3
,可得 A+C=
3
,即 C=
3
-A,A-C=2A-
3
.利用三角恒等变换化简 2cos2A+cos(A-C)为
sin(2A+
π
6
)+1.根据 0<A<
3
,利用正弦函数的定义域和值域求得即2cos2A+cos(A-C)的范围.
解答:解析:(1)△ABC中,由正弦定理得sinA=
a
2R
,sinB=
b
2R
,sinC=
c
2R 

代入已知式,可得 a2+c2-b2=ac,
再由余弦定理求得,cosB=
a2+c2-b2
2ac
=
1
2
,∴B=
π
3

(2)△ABC中,A+B+C=π,又B=
π
3
,∴A+C=
3
,即 C=
3
-A,A-C=2A-
3

∴2cos2A+cos(A-C)=2cos2A+cos(2A-
3
)=cos2A+1+cos2A•(-
1
2
)+sin2A•
3
2
=
3
2
sin2A+
1
2
cos2A+1
=sin(2A+
π
6
)+1.
∵0<A<
3
,∴
π
6
<2A+
π
6
2
,∴-1<sin(2A+
π
6
)≤1,0<sin(2A+
π
6
)+1≤2,
即2cos2A+cos(A-C)的范围是(0,2].
点评:本题主要考查三角函数的恒等变换及化简求值,正弦定理以及正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网