题目内容
在△ABC中,边a,b,c的对角分别为A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范围.
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范围.
分析:(1)把正弦定理代入已知条件可得 a2+c2-b2=ac,再由余弦定理求得,cosB=
=
,由此可得 B的值.
(2)△ABC中,由B=
,可得 A+C=
,即 C=
-A,A-C=2A-
.利用三角恒等变换化简 2cos2A+cos(A-C)为
sin(2A+
)+1.根据 0<A<
,利用正弦函数的定义域和值域求得即2cos2A+cos(A-C)的范围.
| a2+c2-b2 |
| 2ac |
| 1 |
| 2 |
(2)△ABC中,由B=
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
sin(2A+
| π |
| 6 |
| 2π |
| 3 |
解答:解析:(1)△ABC中,由正弦定理得sinA=
,sinB=
,sinC=
,
代入已知式,可得 a2+c2-b2=ac,
再由余弦定理求得,cosB=
=
,∴B=
.
(2)△ABC中,A+B+C=π,又B=
,∴A+C=
,即 C=
-A,A-C=2A-
.
∴2cos2A+cos(A-C)=2cos2A+cos(2A-
)=cos2A+1+cos2A•(-
)+sin2A•
=
sin2A+
cos2A+1
=sin(2A+
)+1.
∵0<A<
,∴
<2A+
<
,∴-1<sin(2A+
)≤1,0<sin(2A+
)+1≤2,
即2cos2A+cos(A-C)的范围是(0,2].
| a |
| 2R |
| b |
| 2R |
| c |
| 2R |
代入已知式,可得 a2+c2-b2=ac,
再由余弦定理求得,cosB=
| a2+c2-b2 |
| 2ac |
| 1 |
| 2 |
| π |
| 3 |
(2)△ABC中,A+B+C=π,又B=
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
∴2cos2A+cos(A-C)=2cos2A+cos(2A-
| 2π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=sin(2A+
| π |
| 6 |
∵0<A<
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 6 |
| π |
| 6 |
即2cos2A+cos(A-C)的范围是(0,2].
点评:本题主要考查三角函数的恒等变换及化简求值,正弦定理以及正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目