题目内容
| lim |
| n→∞ |
| ||||||
|
1
1
.分析:由
+
+…+
=2+3+…+n=
和C22+C32+…+Cn2=Cn+12,把
等价转化为
,进一步转化为
,由此能求出其结果.
| C | 1 2 |
| C | 2 3 |
| C | n-1 n |
| (n-1)(n+2) |
| 2 |
| lim |
| n→∞ |
| ||||||
|
| lim |
| n→∞ |
| 2+3+…+n | ||
|
| lim |
| n→∞ |
| ||
|
解答:解:
=
=
=
=1.
故答案为:1.
| lim |
| n→∞ |
| ||||||
|
=
| lim |
| n→∞ |
| 2+3+…+n | ||
|
=
| lim |
| n→∞ |
| ||
|
=
| lim |
| n→∞ |
| n2+n-2 |
| n2+n |
=1.
故答案为:1.
点评:本题考查数列的极限的应用,解题时要认真审题,注意组合数的性质的灵活运用,合理地进行等价转化.
练习册系列答案
相关题目
| lim |
| n→∞ |
| ||||||||
n(
|
| A、3 | ||
B、
| ||
C、
| ||
| D、6 |