题目内容
| lim |
| n→∞ |
| ||||||||
n(
|
| A.3 | B.
| C.
| D.6 |
∵C22+C32+C42+…+Cn2=C33+C32+C42++Cn2=C43+C42+…+Cn2═Cn+13,
n(
+
+
++
)=n
,
∴
=
=
=
.
故选B.
n(
| C | 12 |
| C | 13 |
| C | 14 |
| C | 1n |
| (2+n)(n-1) |
| 2 |
∴
| lim |
| n→∞ |
| ||||||||
n(
|
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| ||
|
| 1 |
| 3 |
故选B.
练习册系列答案
相关题目
| lim |
| n→∞ |
| ||||||||
n(
|
| A、3 | ||
B、
| ||
C、
| ||
| D、6 |