题目内容

偶函数y=f(x)在区间[0,4]上单调递减,则有


  1. A.
    f(-1)>f(数学公式)>f(-π)
  2. B.
    f(数学公式)>f(-1)>f(-π)
  3. C.
    f(-π)>f(-1)>f(数学公式
  4. D.
    f(-1)>f(-π)>f(数学公式
A
分析:由函数y=f(x)为偶函数,可得f(-x)=f(x),从而有f(-1)=f(1),f(-π)=f(π),结合函数y=f(x)在[0,4]上的单调性可比较大小
解答:∵函数y=f(x)为偶函数,且在[0,4]上单调递减
∴f(-x)=f(x)
∴f(-1)=f(1),f(-π)=f(π)
∵1<<π∈[0,4]
f(1)>f()>f(π)即f(-1)>f()>f(-π)
故选A
点评:本题主要考查了函数的奇偶性及函数的单调性的综合应用,解题的关键是由偶函数把所要比较的式子转化为同一单调区间上可进行比较
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网