题目内容
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线y2=2px上,△ABC的重心与此抛物线的焦点F重合(如图)(I)写出该抛物线的方程和焦点F的坐标;
(II)求线段BC中点M的坐标
(III)求BC所在直线的方程.
【答案】分析:(1)由点A(2,8)在抛物线y2=2px上,将A点坐标代入,易求出参数p的值,代入即得抛物线的方程和焦点F的坐标;
(2)又由,△ABC的重心与此抛物线的焦点F重合,由重心坐标公式,易得线段BC中点M的坐标;
(3)设出过BC中点M的直线方程,根据联立方程、设而不求、余弦定理易构造关于直线斜率k的方程,解方程求出k值,进而可以得到直线的方程.
解答:
解:(I)由点A(2,8)在抛物线y2=2px上,有82=2p•2解得p=16
所以抛物线方程为y2=32x,焦点F的坐标为(8,0)
(II)如图,由F(8,0)是△ABC的重心,M是BC的中点,AM是BC上的中线,由重心的性质可得
;
设点M的坐标为(x,y),则
解得x=11,y=-4所以点M的坐标为(11,-4)
(III)由于线段BC的中点M不在x轴上,所以BC所在的直线不垂直于x轴.
设BC所成直线的方程为y+4=k(x-11)(k≠0)
由
消x得ky2-32y-32(11k+4)=0
所以
由(II)的结论得
解得k=-4
因此BC所在直线的方程为y+4=-4(x-11)即4x+y-40=0.
点评:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.
(2)又由,△ABC的重心与此抛物线的焦点F重合,由重心坐标公式,易得线段BC中点M的坐标;
(3)设出过BC中点M的直线方程,根据联立方程、设而不求、余弦定理易构造关于直线斜率k的方程,解方程求出k值,进而可以得到直线的方程.
解答:
所以抛物线方程为y2=32x,焦点F的坐标为(8,0)
(II)如图,由F(8,0)是△ABC的重心,M是BC的中点,AM是BC上的中线,由重心的性质可得
设点M的坐标为(x,y),则
(III)由于线段BC的中点M不在x轴上,所以BC所在的直线不垂直于x轴.
设BC所成直线的方程为y+4=k(x-11)(k≠0)
由
所以
因此BC所在直线的方程为y+4=-4(x-11)即4x+y-40=0.
点评:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.
练习册系列答案
相关题目