搜索
题目内容
已知函数
,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是( )。
试题答案
相关练习册答案
练习册系列答案
练习与测试湖南教育出版社系列答案
学而优中考专题分类集训南京大学出版社系列答案
浙大优学中考探究题精析精练系列答案
励耘第二卷三年中考优化卷系列答案
中考必备中考真题精编系列答案
四川高考一轮复习导学案系列答案
经纶学典默写达人系列答案
名师讲坛1课1练系列答案
名师导航同步练与测系列答案
课堂感悟系列答案
相关题目
已知函数f(x)=
m
•
n
,其中
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx)
(ω>0),若f(x)图象中相邻对称轴间的距离为
π
2
.
(1)求函数y=f(x)的单调递增区间;
(2)若函数g(x)=f(x)-a在区间[-
π
6
,
π
4
]上恰有两个零点,求a的取值范围.
(1)利用函数单调性的定义证明函数
h(x)=x+
3
x
在[
3
,∞)
上是增函数;
(2)我们可将问题(1)的情况推广到以下一般性的正确结论:已知函数
y=x+
t
x
有如下性质:如果常数t>0,那么该函数在
(0,
t
]
上是减函数,在
[
t
,+∞)
上是增函数.
若已知函数
f(x)=
4
x
2
-12x-3
2x+1
,x∈[0,1],利用上述性质求出函数f(x)的单调区间;又已知函数g(x)=-x-2a,问是否存在这样的实数a,使得对于任意的x
1
∈[0,1],总存在x
2
∈[0,1],使得g(x
2
)=f(x
1
)成立,若不存在,请说明理由;如存在,请求出这样的实数a的值.
已知函数f(x)=ax
3
+bx
2
+4x的极小值为-8,其导函数y=f'(x)的图象经过点(-2,0),如右图所示.
(1)求f(x)的解析式;
(2)求f(x)的递增区间
(3)若函数g(x)=f(x)-k在区间[-3,2]上有两个不同的零点,求实数k的取值范围.
(2006•宣武区一模)已知函数f(x)=x
3
+bx
2
+cx+d的图象经过原点O,且在x=1处取得极值,曲线y=f(x)在原点处的切线l与直线y=2x的夹角为45°,且切线l的倾斜角为钝角.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数g(x)=mx
2
+(m-6)x的图象与函数y=f(x)的图象恰有3个不同交点,求实数m的取值范围.
(2011•江西模拟)已知函数f(x)=(ax
2
+bx+c)e
x
在x=1处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.证明:当x>1时,函数f(x)不存在“保值区间”.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案