题目内容
设离心率(Ⅰ)求椭圆M的方程;
(Ⅱ)若相异两点A、B关于x轴对称,直线BC交x轴与点Q,求Q点坐标.
【答案】分析:(Ⅰ)设圆所过短轴端点为N,由|NF1|=a,∠PNF1=
,
,可判断F2(c,0)是以PF1为直径的圆的圆心,根据圆和直线相切可得
,据此解得c值,从而得到a,b;
(Ⅱ)设点A(x1,y1),C(x2,y2),则点B(x1,-y1),设直线PA的方程为y=k(x-3),代入椭圆方程消掉y得x的二次方程,写出直线BC的方程,令y=0可得点Q的横坐标,代入韦达定理即可求得其值,从而得到点Q的坐标;
解答:解:(Ⅰ)设以PF1为直径的圆经过椭圆M短轴端点N,
∴|NF1|=a,∠PNF1=
,∵
,∴a=2c,
∴
,|F1P|=2a.
∴F2(c,0)是以PF1为直径的圆的圆心,
∵该圆和直线
相切,
∴
,
∴
,
∴椭圆M的方程为:
.
(Ⅱ)设点A(x1,y1),C(x2,y2),则点B(x1,-y1),
设直线PA的方程为y=k(x-3),联立方程组
,
化简整理得(4k2+3)x2-24k2x+36k2-12=0,
由△=(24k2)2-4•(3+4k2)•(36k2-12)>0得
.
则
.
直线BC的方程为:
,
令y=0,则
,
∴Q点坐标为
.
点评:本题考查直线方程、椭圆方程及其位置关系,考查学生对问题的分析解决能力,韦达定理、判别式是常用内容,要牢固掌握.
(Ⅱ)设点A(x1,y1),C(x2,y2),则点B(x1,-y1),设直线PA的方程为y=k(x-3),代入椭圆方程消掉y得x的二次方程,写出直线BC的方程,令y=0可得点Q的横坐标,代入韦达定理即可求得其值,从而得到点Q的坐标;
解答:解:(Ⅰ)设以PF1为直径的圆经过椭圆M短轴端点N,
∴|NF1|=a,∠PNF1=
∴
∴F2(c,0)是以PF1为直径的圆的圆心,
∵该圆和直线
∴
∴
∴椭圆M的方程为:
(Ⅱ)设点A(x1,y1),C(x2,y2),则点B(x1,-y1),
设直线PA的方程为y=k(x-3),联立方程组
化简整理得(4k2+3)x2-24k2x+36k2-12=0,
由△=(24k2)2-4•(3+4k2)•(36k2-12)>0得
则
直线BC的方程为:
令y=0,则
∴Q点坐标为
点评:本题考查直线方程、椭圆方程及其位置关系,考查学生对问题的分析解决能力,韦达定理、判别式是常用内容,要牢固掌握.
练习册系列答案
相关题目