题目内容
6.在△ABC中,sin(A+B)+2sin(B+C)cos(A+C)=0,则△ABC一定是( )| A. | 等腰直角三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等边三角形 |
分析 根据三角形的性质A+B+C=π,将其转化为sin(A-B)=0,可得A=B,三角形是等腰三角形.
解答 解:在三角形中A+B+C=π,
sin(B+C)=sin(π-A)=sinA,
cos(A+C)=cos(π-B)=-cosB,
∴2sin(B+C)cos(A+C)=-2sinAcosB,
sin(A+B)+2sin(B+C)cos(A+C)
=sinAcosB+cosAsinB-2sinAcosB,
=-sinAcosB+sinAcosB
=-sin(A-B),
∴sin(A-B)=0,
∴A-B=kπ,k∈Z,
∴A=B,
∴三角形一定是等腰三角形,
故答案选:B.
点评 本题考查两角和的正弦公式及三角形的性质,属于基础题.
练习册系列答案
相关题目
11.已知向量$\overrightarrow{a}$=(4cosx,$\frac{1}{3}$),$\overrightarrow{b}$=(sin(x+$\frac{π}{6}$),-1),且$\overrightarrow{a}•\overrightarrow{b}$=0,则sin(2x+$\frac{7π}{6}$)=( )
| A. | -$\frac{2\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
18.已知$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(-3,1),则$\overrightarrow{AB}$=( )
| A. | (4,-3) | B. | (-4,3) | C. | (-2,-1) | D. | (2,1) |