题目内容
(05年全国卷Ⅰ文)(12分)
设正项等比数列
的首项
,前n项和为
,且
。
(Ⅰ)求
的通项;
(Ⅱ)求
的前n项和
。
解析:(Ⅰ)由
得 ![]()
即![]()
可得![]()
因为
,所以
解得
,因而 ![]()
(Ⅱ)因为
是首项
、公比
的等比数列,故
![]()
则数列
的前n项和 ![]()
![]()
前两式相减,得 ![]()
即 ![]()
练习册系列答案
相关题目
题目内容
(05年全国卷Ⅰ文)(12分)
设正项等比数列
的首项
,前n项和为
,且
。
(Ⅰ)求
的通项;
(Ⅱ)求
的前n项和
。
解析:(Ⅰ)由
得 ![]()
即![]()
可得![]()
因为
,所以
解得
,因而 ![]()
(Ⅱ)因为
是首项
、公比
的等比数列,故
![]()
则数列
的前n项和 ![]()
![]()
前两式相减,得 ![]()
即 ![]()