题目内容
(2012•杭州二模)数列{an}中,a1=2,an+an+1=(
)n(n∈N*),Sn=a1+5a2+52a3+…+5n-1an,则
=
.
| 1 |
| 5 |
6Sn-
| ||
| n |
| n+1 |
| n |
| n+1 |
| n |
分析:利用数列{an}中,a1=2,an+an+1=(
)n(n∈N*),可得5nan+5nan+1=1,利用“累加求和”及已知可得6Sn-5nan=n+1,进而即可得出.
| 1 |
| 5 |
解答:解:∵数列{an}中,a1=2,an+an+1=(
)n(n∈N*),
∴5nan+5nan+1=1,
∴a1=2,
51a1+51a2=1,
52a2+52a3=1
…
5n-1an-1+5n-1an=1,
把上面的n个等式相加得6a1+6×51a2+6×52a3+…+6×5n-2an-1+5n-1an=n+1.
∴6(a1+51a2+52a3+…+5n-2an-1+5n-1an)-5nan=n+1
∴6Sn-5nan=n+1,
∴
=
.
故答案为
.
| 1 |
| 5 |
∴5nan+5nan+1=1,
∴a1=2,
51a1+51a2=1,
52a2+52a3=1
…
5n-1an-1+5n-1an=1,
把上面的n个等式相加得6a1+6×51a2+6×52a3+…+6×5n-2an-1+5n-1an=n+1.
∴6(a1+51a2+52a3+…+5n-2an-1+5n-1an)-5nan=n+1
∴6Sn-5nan=n+1,
∴
| 6Sn-5nan |
| n |
| n+1 |
| n |
故答案为
| n+1 |
| n |
点评:熟练掌握“累加求和”和变形利用已知条件是解题的关键.
练习册系列答案
相关题目