题目内容
(本题13分)已知数列{an}中,a1 = t (t≠0,且t≠1),a2 = t2.且当x = t时,函数f (x) =
(an an 1)x2 (an + 1 an) x (n≥2)取得极值.
(1)求证:数列{an + 1 an}是等比数列;
(2)若bn = an ln |an| (n∈N+),求数列{bn}的前n项的和Sn;
(3)当t =
时,数列{bn}中是否存在最大项?如果存在,说明是第几项,如果不存在,请说明理由.
解析:(1)由已知f′(t) = (an an-1)?t (an + 1 an) = 0.
即 (an an 1) t = (an + 1 an)
又a2 a1 = t2 t,t≠0且t≠1.
∴a2 a1≠0.
∴![]()
∴数列{an + 1 an}是首项为t2 t,公比为t的等比数列.……………………4分
(2)由(1)知an + 1 an = (t2 t)?tn1 = t n+1 t n.
∴an an1 = tn tn1; an1 an = tn1 tn2;……a2 a1 = t2 t
以上n个式子相加:ana1 = tn t, an = tn, (t≠0且t≠1).………………6分
bn = an ln |an| = tn?ln |tn| = n?tn?ln|t|.
∴Sn = (t + 2?t2 + 3?t3 + … +n?tn )?ln |t|
t Sn = (t2 + 2t3 + …+ ntn + 1) ln |t|
∴Sn =
…………………………………………9分
(3)因为t =
,即1<t<0.
∴当n为偶数时,bn = n?t n ln| t |<0
当n为奇数时,bn = n?t n ln| t |>0
所以最大项必须为奇数项.…………………………………………10分
设最大项为b2k + 1,则有![]()
即
.
整理得:
将![]()
∵k∈N+ ∴k = 2.
即数列{bn}中的最大项为第5项.………………………………13分