题目内容
已知向量
=(sinA,sinB),
=(cosB,cosA),
.
=sin2C且A,B,C分别为的三边a,b,c的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且
.(
-
)=18,求边c的长.
| m |
| n |
| m |
| n |
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且
| CA |
| AB |
| AC |
(Ⅰ)
•
=sinAcosB+sinBcosA=sin(A+B)
对于△ABC,A+B=π-C,0<C<π,∴sin(A+B)=sinC
∴
•
=sinC
又∵
•
=sin2C,
∴sin2C=2sinCcosC=sinC,即cosC=
,又C∈(0,π)
∴C=
;
(Ⅱ)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB
由正弦定理得2c=a+b,
∵
•(
-
)=18,
∴
•
=18,
得abcosC=18,即ab=36,
由余弦定理c2=a2+b2-2abcosC=(a+b)2-3ab,
∴c2=4c2-3×36,即c2=36,
∴c=6.
| m |
| n |
对于△ABC,A+B=π-C,0<C<π,∴sin(A+B)=sinC
∴
| m |
| n |
又∵
| m |
| n |
∴sin2C=2sinCcosC=sinC,即cosC=
| 1 |
| 2 |
∴C=
| π |
| 3 |
(Ⅱ)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB
由正弦定理得2c=a+b,
∵
| CA |
| AB |
| AC |
∴
| CA |
| CB |
得abcosC=18,即ab=36,
由余弦定理c2=a2+b2-2abcosC=(a+b)2-3ab,
∴c2=4c2-3×36,即c2=36,
∴c=6.
练习册系列答案
相关题目