题目内容

8.已知椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1,其左右焦点分别为F1,F2,过其左焦点且斜率为1的直线与该椭圆相交与A,B两点,则$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=4.

分析 由题意可知:焦点在x轴上,a=2,b=1,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,左焦点F1(-$\sqrt{3}$,0),设直线AB的方程为:y=x+$\sqrt{3}$,代入椭圆方程,由x1+x2=-$\frac{2\sqrt{3}}{\frac{5}{4}}$=-$\frac{8\sqrt{3}}{5}$,x1•x2=$\frac{8}{5}$,y1•y2=(x1+$\sqrt{3}$)(x2+$\sqrt{3}$)=-$\frac{1}{5}$,丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{8}{5}$,由两点之间的距离公式可知:丨F1A丨•丨F1B丨=$\sqrt{({x}_{1}+1)^{2}+{y}_{1}^{2}}$•$\sqrt{({x}_{2}+1)^{2}+{y}_{2}^{2}}$=2丨y1•y2丨,则$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=$\frac{丨{F}_{1}A丨+丨{F}_{1}B丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{丨AB丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$,即可求得$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$的值.

解答 解:由椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1,焦点在x轴上,a=2,b=1,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,
则左焦点F1(-$\sqrt{3}$,0),设直线AB的方程为:y=x+$\sqrt{3}$,
∴$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=x+\sqrt{3}}\end{array}\right.$,整理得:$\frac{5}{4}$x2+2$\sqrt{3}$x+2=0,
设A(x1,y1),B(x2,y2),
由韦达定理可知:x1+x2=-$\frac{2\sqrt{3}}{\frac{5}{4}}$=-$\frac{8\sqrt{3}}{5}$,x1•x2=$\frac{8}{5}$,
y1•y2=(x1+$\sqrt{3}$)(x2+$\sqrt{3}$)=x1•x2+$\sqrt{3}$(x1+x2)+3=-$\frac{1}{5}$,
由弦长公式可知:丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8\sqrt{3}}{5})^{2}-4×\frac{8}{5}}$=$\frac{8}{5}$,
丨F1A丨•丨F1B丨=$\sqrt{({x}_{1}+1)^{2}+{y}_{1}^{2}}$•$\sqrt{({x}_{2}+1)^{2}+{y}_{2}^{2}}$=2丨y1•y2
则$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=$\frac{丨{F}_{1}A丨+丨{F}_{1}B丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{丨AB丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{\frac{8}{5}}{2×\frac{1}{5}}$=4,
故答案为:4.

点评 本题考查直线与椭圆的位置关系,考查韦达定理,两点之间的距离公式即弦长公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网