题目内容

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,点P为双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为Q,则点Q的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2
点F1关于∠F1PF2的角平分线PQ的对称点M在直线PF2的延长线上,
故|F2M|=|PF1|-|PF2|=2a,
又OQ是△F2F1M的中位线,
故|OQ|=a,
点Q的轨迹是以原点为圆心,a为半径的圆,
则点Q的轨迹方程为x2+y2=a2
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网