题目内容

1.在△ABC,已知a:b:c=3:5:7,则这个三角形最大角的外角是(  )
A.30°B.60°C.90°D.120°

分析 由a:b:c的比值,设一份为k,表示出a,b及c,利用余弦定理表示出cosC,将表示出的a,b及c代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数,为此三角形中最大角的度数,可得结论.

解答 解:∵a:b:c=3:5:7,即a=3k,b=5k,c=7k,
∴由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{9{k}^{2}+25{k}^{2}-49{k}^{2}}{30{k}^{2}}$=-$\frac{1}{2}$,
又C为三角形的内角,
则此三角形中最大角C的度数是120°,
∴这个三角形最大角的外角是60°.
故选:B.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网