题目内容
设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a-b+c)=ac
(I)求B
(II)若sinAsinC=
,求C.
(I)求B
(II)若sinAsinC=
| ||
| 4 |
分析:(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;
(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A-C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A-C)的值,利用特殊角的三角函数值求出A-C的值,与A+C的值联立即可求出C的度数.
(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A-C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A-C)的值,利用特殊角的三角函数值求出A-C的值,与A+C的值联立即可求出C的度数.
解答:解:(I)∵(a+b+c)(a-b+c)=(a+c)2-b2=ac,
∴a2+c2-b2=-ac,
∴cosB=
=-
,
又B为三角形的内角,
则B=120°;
(II)由(I)得:A+C=60°,∵sinAsinC=
,cos(A+C)=
,
∴cos(A-C)=cosAcosC+sinAsinC=cosAcosC-sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=
+2×
=
,
∴A-C=30°或A-C=-30°,
则C=15°或C=45°.
∴a2+c2-b2=-ac,
∴cosB=
| a2+c2-b2 |
| 2ac |
| 1 |
| 2 |
又B为三角形的内角,
则B=120°;
(II)由(I)得:A+C=60°,∵sinAsinC=
| ||
| 4 |
| 1 |
| 2 |
∴cos(A-C)=cosAcosC+sinAsinC=cosAcosC-sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=
| 1 |
| 2 |
| ||
| 4 |
| ||
| 2 |
∴A-C=30°或A-C=-30°,
则C=15°或C=45°.
点评:此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目