题目内容
20.已知曲线C的方程是$\frac{x^2}{m}+{y^2}=1(m∈R$,且m≠0).给出下列三个命题:①若m>0,则曲线C表示椭圆;
②若m<0,则曲线C表示双曲线;
③若曲线C表示焦点在x轴上的椭圆,则m的值越大,椭圆的离心率越大.
其中,所有正确命题的序号是②③.
分析 据椭圆、双曲线方程的特点,列出等式求出离心率e,判断正误.
解答 解:①若m>0,且m≠1,则曲线C表示椭圆,不正确;
②若m<0,则曲线C表示双曲线正确,;
③若曲线C表示焦点在x轴上的椭圆,则当m>1时,椭圆的离心率e=$\sqrt{\frac{m-1}{m}}$=$\sqrt{1-\frac{1}{m}}$,m的值越大,椭圆的离心率越大,正确.
故答案为:②③.
点评 本小题主要考查椭圆的简单性质、双曲线的简单性质等基础知识,属于基础题.
练习册系列答案
相关题目
5.已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,则tanα=( )
| A. | $-\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
12.如果奇函数y=f(x)(x≠0)在x∈(-∞,0)时,f(x)=x+1,那么使f(x-2)<0成立的x的取值范围是( )
| A. | (-∞,1)∪(3+∞) | B. | (-∞,-1)∪(0,1) | C. | (-∞,0)∪(0,3) | D. | (-∞,1)∪(2,3) |
9.某品牌汽车4S点,对该品牌旗下的A型、B型、C型汽车进行维修保养调查,汽车4S店记录了该品牌三种类型汽车的维修情况,整理得下表:
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(Ⅰ)求A型,B型,C型各车型汽车的数目;
(Ⅱ)从抽取的A型和B型汽车中随机再选出2辆汽车进行电话回访,求这2辆汽车来自同一类型的概率;
(Ⅲ)维修结束后这100辆汽车的司机采用“100分制”“打分的方式表示4S店的满意度,按照大于等于80优秀,小于80合格,得到如下列联表
问:能否在犯错误概率不超过0.01前提下认为司机对4S店满意度调查于性别有关?请说明原因.
附
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
| 车型 | A型 | B型 | C型 |
| 频数 | 20 | 40 | 40 |
(Ⅰ)求A型,B型,C型各车型汽车的数目;
(Ⅱ)从抽取的A型和B型汽车中随机再选出2辆汽车进行电话回访,求这2辆汽车来自同一类型的概率;
(Ⅲ)维修结束后这100辆汽车的司机采用“100分制”“打分的方式表示4S店的满意度,按照大于等于80优秀,小于80合格,得到如下列联表
| 优秀 | 合格 | 不合格 | |
| 男司机 | 10 | 38 | 48 |
| 女司机 | 25 | 27 | 52 |
| 合计 | 35 | 65 | 100 |
附
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
10.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466-485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( )
| A. | $\frac{16}{29}$ | B. | $\frac{16}{27}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{29}$ |